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Analytical Description of Metal
Loss in Finite-Difference

Transmission-Line Analysis
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Abstract—A new approximate approach to include metallic
loss of planar transmission lines in the finite-difference fre-
quency-domain analysis is presented. From the two-dimensional
field behavior in the vicinity and inside of nonideal metallic layers,
analytical approximations are obtained and incorporated into the
algorithm. This approach leads to considerable savings in compu-
tational efforts. The same mesh size as in the lossless case can be
used at an acceptable accuracy level and skin depth does not need
to be resolved. Furthermore, preprocessing can be automated.
The benefits of the new method are demonstrated for typical
monolithic microwave integrated circuit coplanar waveguides.

Index Terms—Conductor loss, coplanar waveguides, finite-dif-
ference methods, MMICs, singular field behavior, skin effect,
transmission-line analysis.

I. INTRODUCTION

T HE incorporation ofa priori knowledge into transmis-
sion-line analysis is well known in computational electro-

magnetics. A typical example is the singular field behavior at
microstrip discontinuities in conjunction with the spectral-do-
main approach (SDA) [1] or the finite-difference (FD) method
[2]–[5]. The objective is to reduce numerical efforts while main-
taining accuracy. This is the more important when miniatur-
ized structures such as monolithic microwave integrated circuit
(MMIC) coplanar lines are treated [6], [8], where conductor loss
plays a significant role and skin depth needs to be resolved. Re-
cently, the hybrid FD approach of [4] was extended to consider
metal loss [6], [7], which allows discretization steps much larger
than skin depth in the dynamic analysis (in the following, “dy-
namic” will be used for an analysis considering the full set of
Maxwell’s equations, whereas “quasi-static” refers to a simpli-
fied description where displacement currents are neglected and
only conducting currents are included). The disadvantage of the
hybrid method, however, is the preprocessing efforts: one needs
to perform two separate runs; first, a quasi-static FD analysis
with high resolution, and then, a dynamic FD analysis [6]. This
procedure leads to dramatic savings in computational costs, but
requires both additional computer resources and an experienced
user.

The approach presented here—which we will refer to as
the analytical hybrid FD method in the following—avoids
this limitation. It relies on analytical expressions for the
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a priori knowledge and, thus, can be automated. For this
purpose, closed-form approximations are developed for the
electromagnetic field within rectangular planar conductors of
finite conductivity ( ) and, in particular, in the vicinity
of 90 conductor edges. These expressions are deduced under
appropriate simplifying assumptions. In order to incorporate
the known field behavior into the FD algorithm, the coefficients
of the FD equations are locally multiplied with correction
factors (see [7]). To demonstrate validity and benefits of this
approach, it is applied to typical MMIC coplanar waveguides
(CPWs) for both the even and the odd modes and compared to
the conventional finite-difference frequency-domain (FDFD)
formulation, as well as to mode-matching results [8].

The new formulation differs principally from previous
impedance boundary or conducting sheet approximations (e.g.,
[13]) because finite thickness is retained in the analysis and
two-dimensional (2-D) effects at the edges are accounted for.

II. M ETHOD

Our FD description starts from Maxwell’s equations in inte-
gral form [see (1) and (2)] and applies a discretization on Yee’s
mesh according to the well-known finite-integration scheme [9].
A Cartesian coordinate system is used withbeing the direction
of wave propagation

(1)

(2)

In order to take into account strong local changes of the elec-
tromagnetic field within nonideal metallic conductors and in the
vicinity of edges, the conventional FD line and surface integral
representations are multiplied by suitable correction factors, as
shown in (3) and (4), respectively. denotes the discretized
value of the or fields, respectively, denotes a line seg-
ment of the integration path, and denotes the area of the
corresponding cell face. and are the correction factors with

and referring to the electric and to
the magnetic fields, respectively,

(3)

(4)
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Fig. 1. Typical metallic edge geometry.

In the case of a longitudinally homogeneous transmission
line, some integrals do not require correction because they nei-
ther involve singularities, nor strong local changes, thus, the
conventional FD formulation suffices. For other quantities, the
quantitative influence is small such that it does not make sense to
introduce any refinement there. The latter is true, for example,
for the transverse electric fieldwithin a conductor (also in the
nonideal case) and the magnetic-field components normal to a
conductor surface. The magnetic-field component, on the
other hand, is not affected due to longitudinal homogeneity.
Briefly speaking, one finds that only the line integrals of the
transverse electric-field component, at edges and the sur-
face integrals of , , and within conductors need correc-
tion.

The novel idea presented in this paper is to use analytical ap-
proximations to determine the correction factors for the fields
within nonideal conductors of conductivity. Let us consider
the case of such a rectangular conductor with an edge embedded
in two different dielectrics, as shown in Fig. 1. The dielectric
materials are characterized by real permittivities, , and
the magnetic permeability . As derived in [10], the trans-
verse electric-field components ( and ) tend to infinity ac-
cording to an rule as distance from the edge approaches
zero, for both infinite and finite conductivity . In contrast
to the case of ideal conductors, however, the transverse mag-
netic field ( and ) is bounded for . Nevertheless,
the transverse magnetic and longitudinal electric field () in-
side the conductor is dominated by the skin effect and, there-
fore, may exhibit peaks with strong local changes near edges
and the conductor surface, as illustrated in Fig. 2. This field
behavior varies with frequency. In the dc limit, one has a ho-
mogeneous current distribution and, hence, at low frequencies,
a smooth characteristic is found. In the high-frequency limit,
where skin depth is smaller than the conductor dimensions, the
fields in the conductor decay away from the surface and strong
field gradients are observed. In the one-dimensional (1-D) case,
this can be described easily by means of the well-known skin-ef-
fect law. In reality, however, 2-D effects show a significant in-

Fig. 2. Normalized plot of longitudinal current densityJ = � � E at a
conductor edge (frequency: 50 GHz, conductivity� = 3�10 S/m). The marked
regions indicate whether the field behavior is approximately 1-D or 2-D.

fluence. This is true particularly at the conductor edges. There-
fore, a closed-form approximation of the 2-D field distribution
will be derived in the following, which can be used to calculate
the respective correction factors analytically.

We will start with the transverse electric field (, ). These
components are negligiblewithin the conductors and, therefore,
do not need a correction there, but only outside at the conductor
edges, as in the case of infinite conductivity. The corresponding
expression for is derived following [11] and [12] and given
in (5), where denotes the angular frequency anddenotes the
permittivity. Strictly speaking, as a consequence of finite con-
ductivity, assumes a complex value, but its imaginary part is
small and, for metallic conductivities, the real part has almost
the same value as for the electrostatic solution with ideal con-
ductors (for details, see [10])

where and

(5)

For the transverse magnetic-field components and ,
one has a different situation. Inside the conductors, they show a
skin-depth-related behavior. In this region, one finds thatand

can be approximated by a 1-D characteristic without signifi-
cant loss of accuracy. Thus, we assume that the- and -compo-
nents of the magnetic field follow
the well-known skin-effect rule. This leads to (6) with being
the length of a Yee cell in the- or -directions and denoting
the discretized field value related to this cell

where

and

(6)
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The most complicated case is that of the longitudinal elec-
tric-field component inside the conductor or, in other words,
the current density . As illustrated by Fig. 2, this field
component exhibits an inherently 2-D behavior near conductor
edges, whereas it approaches the classical 1-D case elsewhere.
Since there is no analytical model available for the 2-D geom-
etry, we choose an empirical approximation to describe the spa-
tial dependence of . It is based on high-resolution quasi-static
FD calculations of the typical edge geometries for the frequency
and conductivity range of interest. Equation (7) presents the for-
mula for . It contains the classical skin-effect terms
for and together with an additional expression accounting
for the edge characteristic, which is related to the radius

. The constants , , and are fitting factors, which
were extracted from high-resolution FD calculations and found
to be , , and .
Note that all considerations refer to a coordinate system with its
origin located at the edge (see Fig. 1). Accordingly,and ba-
sically denote the distances from the edge

with (7)

Equation (7) refers to a single edge. Usually, however, one has
several edges in close vicinity, e.g., for thin planar conductors
(see the coplanar geometry in Fig. 3). In this case, two edges
occur, separated by the conductor thickness. Both edges may
then influence the distribution and, correspondingly, the total
electric field inside the conductor has to be described by
superposing the two contributions and
according to (7) as follows:

(8)

Equation (8) is then used to compute as given in (9).
The formula refers to the node (, ) of the Yee mesh, i.e., it
provides the value for . This node has four
neighboring cells, two in the-direction and two in the -di-
rection. The variables ( , , represent
the corresponding lengths of these cells. describes the
conductivity as a function of and . It is constant inside the
conductor and zero outside. Accordingly, denotes the
conductivity and denotes the discretized field value
associated with the node (, )

(9)

with according to (8).
Since we did not find a way to integrate the first term in

(7) analytically, the integral in (9) is calculated numerically
(Gauss–Legendre quadrature), which, is not a difficult task.

Using (8) ensures that can be computed accurately
enough for rectangular conductors of arbitrary thickness .

Fig. 3. Coplanar cross section under investigation (dimensions are
s = 20 �m, w = 10 �m, t = 3 �m, h = 500 �m, a = 450 �m,
b = 1503 �m, " = 12:9, and conductivity� = 3 � 10 S/m. The center wall
can be magnetic or electric depending on symmetry).

For thin conductors with , where denotes skin depth,
(8) approaches a constant value along the thickness direction.
For thick conductors with , on the other hand, the
electric field on both surfaces of a rectangular conductor
behaves like that of a single edge. In the intermediate range,
the influence of both edges has to be accounted for as realized
by the superposition in (8). This is also the most critical range
with regard to accuracy.

Regarding the remaining parameters, (7) and (8) hold for ar-
bitrary frequencies and conductivity values as long as fre-
quency does not exceed the limit of quasi-TEM propagation.
This is because (7), as well as the entire hybrid concept, are
based on quasi-static arguments.

III. RESULTS

In order to verify the analytical hybrid FD method, typical
MMIC CPWs are studied, including even and odd modes, i.e.,
the coplanar mode and the slot-line type as well, which usu-
ally represents a parasitic mode. Fig. 3 shows the geometry.
Due to symmetry, only one-half of the structure is considered
introducing a magnetic and an electric wall at for
the coplanar and slot-line modes, respectively. For the analyt-
ical hybrid FD method, a graded mesh, as in the lossless case
(1350 cells), is used with its smallest cell size being approxi-
mately 1 m. In contrast, the conventional FD analysis requires
resolution of the skin depth, which leads to a much denser
mesh (4248 cells), the smallest cell size of which being about
ten times smaller ( m).

In Figs. 4–7, results of the analytical hybrid FD method
are compared to the conventional FD formulation and
mode-matching data [8]. Effective dielectric permittivity ,
attenuation , and the complex characteristic impedanceare
considered, treating a typical MMIC coplanar line with a fixed
ground-to-ground spacing of 50m in the frequency range
up to 100 GHz. Figs. 4 and 5 provide the results on effective
permittivity , attenuation , and complex
characteristic impedance . The ripple in the impedance
around 55 GHz is caused by the first higher order substrate
mode.
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Fig. 4. CPW-mode effective permittivity" and attenuation� against
frequency (data as in Fig. 3 with magnetic wall in the center); comparison of
the new hybrid method (analytical FDFD) with the conventional FDFD method
and mode-matching data [8].

Fig. 5. CPW-mode complex characteristic impedanceZ (voltage–current
definition) against frequency (other data as in Fig. 4).

Fig. 6. Slot-line-mode effective permittivity" and attenuation� against
frequency (data as in Fig. 3 with electric wall in the center); comparison of the
new hybrid method (analytical FDFD) with the conventional FDFD method and
mode-matching data [8].

The propagation behavior of the slot-line mode—with an
electric wall introduced at —is plotted in Figs. 6 and 7.
As can be seen, effective permittivity exhibits an increase with
frequency, which is considerably larger than that of the coplanar
mode (see Fig. 4). This indicates dispersion due to non-TEM
effects, which also appears in the impedance behavior in Fig. 7.

Fig. 7. Slot-line-mode complex characteristic impedanceZ against
frequency (voltage–current definition, other data as in Fig. 6).

In order to understand this, it is helpful to consider the current
distributions in the coplanar and slot-line cases. In the coplanar
case, the forward current flows on the center conductor and the
backward one divides on the two ground planes with strong
concentration on the slot sides. A crude model describes this
by a line current in the center and two further line currents of
opposite direction and one-half the amplitude on the ground
planes near the slot. Thus, the characteristic dimension is
approximately one-half the ground-to-ground spacing. For the
slot-line type, however, the net current on the center conductor
vanishes and one has two line currents of opposite direction
on the ground planes. The effective characteristic dimension
is approximately the ground-to-ground spacing, which is
double the value for the coplanar mode. Therefore, the slot-line
type shows more pronounced non-TEM effects for the given
frequency range.

Comparing the analytical hybrid method with conventional
high-resolution full-wave FD results, one finds errors below
0.2% in and 5% in , respectively. In the lower mil-
limeter-wave frequency range ( GHz for the CPW mode
and GHz for the slot-line mode), the error inis below
2%. The deviations in can be further reduced by taking into
account the edge behavior of the transverse magnetic field
outsidethe conductor. The relative error in impedance (defined
as ) remains below 1%. The differences between
the conventional FD and mode-matching results are less than
0.1% in , 1.3% in , and 1.2% in . Altogether, these
deviations are fully satisfactory for MMIC design.

Regarding the numerical efforts, the incorporation of correc-
tion factors reduces the number of unknowns to approximately
30% and CPU time by a factor of about eight. This is impressive
and only slightly offset by the preprocessing efforts in calcu-
lating the correction factors according to (5), (6), and (9). More-
over, this procedure can be automated so that the user does not
need to deal with the hybrid procedure, but can simply handle
the structure as in the lossless case.

In order to establish a reliable basis for verification, further
changes in the CPW geometry were considered varying slot-
width and conductor thickness for a constant ground-to-
ground spacing of 50m. The results show similar agreement
with conventional FDFD and mode-matching results, as found
for the data presented in Figs. 4–7.



KUNZE AND HEINRICH: ANALYTICAL DESCRIPTION OF METAL LOSS IN FD TRANSMISSION-LINE ANALYSIS 1279

IV. CONCLUSIONS

Introducing into the FD formulationa priori knowledge about
the field behavior inside metallic conductors leads to consider-
able savings in computational cost. This is because skin depth
does not determine smallest cell size any more and, therefore,
the same discretization, as in the lossless case (ideal conduc-
tors), can be applied. For transmission-line analysis of typical
MMIC coplanar structures, the number of unknowns is reduced
to approximately 30% and CPU time to approximately 13%,
achieving an relative error of less than 0.2% in the complex
propagation constant and below 1% in the complex
impedance . The original contribution of our approach is that
the field behavior within the conductors is described by ana-
lytical approximations based on the skin-effect behavior and a
special 2-D edge term. Thus, preprocessing can be automated,
which leads to an efficient and easy-to-handle FD software tool.
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